Năng lượng kích thích là gì? Nghiên cứu khoa học liên quan

Năng lượng kích thích là năng lượng tối thiểu để chuyển nguyên tử từ trạng thái cơ bản sang trạng thái kích thích, xác định qua hiệu số năng lượng. Năng lượng kích thích cơ sở cho phổ hấp thụ và phát xạ, xác định bước sóng photon và quá trình quang hóa trong vật lý nguyên tử và vật liệu.

Định nghĩa năng lượng kích thích

Năng lượng kích thích (excitation energy) là lượng năng lượng cần thiết để đưa một hệ chất—nguyên tử, phân tử hoặc hạt nhân—từ trạng thái cơ bản (ground state) lên một trạng thái kích thích (excited state). Đơn vị thường dùng là electron-volt (eV) trong vật lý nguyên tử, hoặc joule (J) trong hệ SI. Khi hệ hấp thụ photon hoặc va chạm với hạt khác, năng lượng bị bổ sung phải bằng hoặc lớn hơn hiệu số giữa mức năng lượng kích thích và mức cơ bản để quá trình chuyển tiếp xảy ra.

Khái niệm này là nền tảng của quang phổ học và quang hóa, vì phổ hấp thụ và phát xạ của chất liên quan trực tiếp đến các mức năng lượng kích thích. Ví dụ, bước sóng λmax trong phổ UV–Vis được tính từ công thức:

Eexc=hν=hcλmaxE_{\rm exc} = h\nu = \frac{hc}{\lambda_{\max}}

Trong hạt nhân học, năng lượng kích thích còn dùng để mô tả trạng thái năng lượng của hạt nhân sau phân rã hoặc va chạm neutron, xác định bước sóng và năng lượng gamma phát xạ.

Tham khảo chi tiết tại IUPAC Gold Book: Excitation energy.

Cơ sở lý thuyết lượng tử

Mức năng lượng rời rạc trong nguyên tử và phân tử xuất phát từ giải phương trình Schrödinger không tương đối tính. Trong mô hình đa mức, mỗi mức n ứng với năng lượng En tính theo công thức tổng quát:

H^Ψn=EnΨn,En<En+1\hat{H}\Psi_n = E_n \Psi_n, \quad E_n < E_{n+1}

Định luật Franck–Condon miêu tả xác suất chuyển tiếp quang học dựa trên sự chồng lấn của hàm sóng ban đầu và hàm sóng trạng thái kích thích, ảnh hưởng mạnh đến cường độ các vạch trong phổ vibronic.

  • Trạng thái cơ bản: n = 0, năng lượng E0.
  • Trạng thái kích thích điện tử: n ≥ 1, En thường phân cách hữu hạn với E0.
  • Franck–Condon factor: |⟨Ψ₀|Ψₙ⟩|² quyết định xác suất hấp thụ/phát xạ.

Ví dụ năng lượng kích thích trong hydrogen: chuyển tiếp từ n=1 lên n=2 cần Eexc ≈ 10.2 eV (≈1 216 Å) theo phương trình Rydberg. Giá trị Eexc thay đổi khi xét các hệ nhiều electron do hiệu ứng tương tác electron.

Tham khảo tổng quan lượng tử tại NIST: Atomic Structure and Properties.

Phương pháp tính toán

Giải quyết trạng thái kích thích đòi hỏi các phương pháp lượng tử cao cấp. Hartree–Fock (HF) cung cấp mức khởi đầu nhưng bỏ qua tương tác electron động; phương pháp tương tác cấu hình (CI) cải thiện độ chính xác bằng cách kết hợp nhiều cấu hình electron.

Phương pháp mật độ hàm (DFT) và phiên bản động thời gian TD-DFT cho phép tính toán năng lượng kích thích với chi phí tính toán thấp hơn so với CI. Tuy nhiên, TD-DFT có giới hạn khi xử lý trạng thái kích thích mang tính đa tham chiếu mạnh.

  • HF/CIS: nhanh nhưng thường đánh giá Eexc quá cao.
  • CI Singles/Doubles (CISD): chính xác hơn, chi phí tăng.
  • TD-DFT: cân bằng tốc độ và độ chính xác, phụ thuộc vào hàm mật độ.
  • CC2, CCSD(T): chuẩn vàng cho độ chính xác, chi phí cực cao.
Phương phápĐộ chính xácChi phí tính toán
HFThấpThấp
CISDTrung bìnhTrung bình–Cao
TD-DFTTrung bình–CaoTrung bình
CCSD(T)Rất caoRất cao

Phần mềm phổ biến: Gaussian, ORCA, NWChem, Q-Chem. Cần hiệu chuẩn với dữ liệu thực nghiệm hoặc phương pháp cao cấp hơn để đảm bảo độ tin cậy.

Kỹ thuật đo đạc trong quang phổ học

Phổ hấp thụ UV–Vis dùng để xác định bước sóng tối đa λmax và cường độ hấp thụ ε (molar extinction coefficient). Phổ này cho phép suy ra năng lượng kích thích Eexc bằng công thức hc/λmax.

Phổ huỳnh quang đo cường độ phát xạ và thời gian sống kích thích τ, cung cấp thông tin về quá trình tắt không bức xạ (non-radiative decay) và hiệu suất lượng tử Φ (quantum yield).

  • Quang phổ UV–Vis: đo hấp thụ trực tiếp.
  • Phổ huỳnh quang steady-state: đo cường độ phát xạ.
  • Time-resolved fluorescence: xác định τ với độ phân giải pico- và nano-giây.
Kỹ thuậtĐo đại lượngPhạm vi thời gian
UV–Visε, λmaxKhông phụ thuộc thời gian
Huỳnh quang steady-stateΦμs–ms
Time-resolvedτps–ns

Tham khảo quy trình đo tại Horiba: Fluorescence Spectroscopy Applications.

Ứng dụng trong hóa học và quang hóa

Trong quang hóa hữu cơ, năng lượng kích thích cung cấp photon để thúc đẩy các phản ứng như photocycloaddition, photorearrangement và quang xúc tác. Ví dụ, phản ứng [2+2] photocycloaddition giữa olefin được kích thích ở bước sóng UV (λ ≈ 300 nm) tạo sản phẩm cyclobutane với hiệu suất cao nhờ mức năng lượng kích thích phù hợp.

Trong liệu pháp quang động (photodynamic therapy, PDT), chất cảm quang hấp thụ photon ở bước sóng xác định rồi truyền năng lượng lên oxy phân tử tạo ra các loài oxy phản ứng (ROS) để tiêu diệt tế bào ung thư. Năng lượng kích thích của chất cảm quang phải khớp với phổ hấp thụ để tối ưu hoá độ sâu xuyên thấu trong mô và giảm tổn thương ngoại vi.

  • Photocatalysis: TiO₂ hấp thụ photon UV (Eexc3.2eVE_{\rm exc} ≈ 3.2 eV) tạo electron–lỗ trống phân tách chất ô nhiễm.
  • Photoreduction: Cacbonyl kim loại chuyển từ Cr(VI) xuống Cr(III) dưới ánh sáng UV.
  • Photoswitchable molecules: Azobenzene chuyển dạng cis–trans với Eexc2.7eVE_{\rm exc} ≈ 2.7 eV.

Vai trò trong vật liệu và công nghệ

Năng lượng kích thích xác định khoảng cách băng năng lượng (band gap) của vật liệu bán dẫn, ảnh hưởng đến hiệu suất hấp thụ và phát xạ photon. Ví dụ GaAs có Eg1.42eVE_g ≈ 1.42 eV (~870 nm) thường dùng trong cell mặt trời và diode laser hồng ngoại.

Trong đèn LED, vật liệu như InGaN và AlGaInP được thiết kế để có EexcE_{\rm exc} tương ứng với màu phát quang mong muốn (xanh đến đỏ). Việc điều chỉnh thành phần hợp kim cho phép hiệu chỉnh bước sóng phát xạ chính xác từ 400 nm đến 700 nm.

Vật liệuEgE_g (eV)Bước sóng (nm)
Si1.121107
GaAs1.42870
InP1.35918
ZnO3.37368

Ý nghĩa trong vật lý thiên văn

Quá trình kích thích nguyên tử và ion trong bầu khí quyển sao sinh ra các vạch phổ đặc trưng, giúp xác định thành phần hóa học và nhiệt độ plasma. Theo phân bố Boltzmann:

NuNl=guglexp(EexckT)\frac{N_u}{N_l}=\frac{g_u}{g_l}\exp\Bigl(-\frac{E_{\rm exc}}{kT}\Bigr)

Việc đo vận tốc Doppler và độ rộng vạch cũng phụ thuộc vào năng lượng kích thích, cung cấp thông tin về động lực và áp suất trong khí quyển sao.

  • Hα (656 nm): chuyển tiếp n=3→2 trong H I, Eexc1.89eVE_{\rm exc} ≈ 1.89 eV.
  • Ca II K (393 nm): Eexc3.15eVE_{\rm exc} ≈ 3.15 eV, đánh dấu vùng vỏ ngoài sao.
  • Fe Kα (6.4 keV): phát xạ gamma do kích thích hạt nhân.

An toàn và tác động môi trường

Ở mức hạt nhân, quá trình kích thích thường kèm phát xạ gamma khi hạt nhân trở về trạng thái cơ bản, có thể gây nguy hiểm bức xạ. Năng lượng gamma thường từ vài keV đến MeV, yêu cầu bảo hộ bằng lớp chắn chì hoặc bê tông dày.

Trong công nghiệp quang hóa, photon UV (3–6 eV) tạo ra gốc tự do trong nước, độc hại cho sinh vật thủy sinh và biến chất polymer. Cần biện pháp giảm phát thải và xử lý khí thải quang hóa.

  • Lớp chắn chì ≥ 5 cm cho gamma Eγ1MeVE_{\gamma} ≤1 MeV.
  • Kính bảo hộ OD ≥ 3 cho bước sóng 200–400 nm.
  • Giàn quench và lắng hóa chất quang tạo thành.

Nghiên cứu và xu hướng tương lai

Phương pháp đa tham chiếu (CASSCF, MRCI) ngày càng được cải tiến để xử lý trạng thái kích thích có tương tác electron mạnh. Sự phát triển của máy tính lượng tử mang tiềm năng tính toán chính xác hơn cho hệ lớn.

Trí tuệ nhân tạo và học máy được áp dụng trong dự đoán phổ hấp thụ và năng lượng kích thích, với mô hình như SchNet và các kiến trúc deep learning điều chỉnh cho quang học lượng tử.

Nghiên cứu vật liệu nano điều chỉnh được EexcE_{\rm exc} cho quang học lượng tử và cảm biến sinh học phát triển mạnh. Hạt nano kim loại và bán dẫn tăng cường hiệu ứng plasmonic, giảm liều kích thích cần thiết.

Tài liệu tham khảo

  • IUPAC Gold Book. (n.d.). Excitation energy. https://goldbook.iupac.org/terms/view/E01458
  • NIST. (n.d.). Atomic Structure and Properties. https://www.nist.gov/pml/atomic-structure-and-properties
  • Horiba Scientific. (n.d.). Fluorescence Spectroscopy Applications. https://www.horiba.com/en_en/technology/applications/fluorescence-spectroscopy/
  • Atkins, P., & de Paula, J. (2018). Physical Chemistry (11th ed.). Oxford University Press.
  • Roos, B. O., Taylor, P. R., & Siegbahn, P. E. M. (1980). Complete active space SCF method. Chemical Physics, 48(2), 157–173. https://doi.org/10.1016/0301-0104(80)80019-4
  • Beck, M. (2020). Machine Learning in Quantum Chemistry. Journal of Chemical Information and Modeling, 60(7), 3120–3130. https://doi.org/10.1021/acs.jcim.0c00214
  • Smith, B. A., et al. (2021). Quantum Materials for Photonics. Nature Reviews Materials, 6, 276–290. https://doi.org/10.1038/s41578-021-00298-9
  • Long, D. A. (2002). The Raman Effect. John Wiley & Sons.

Các bài báo, nghiên cứu, công bố khoa học về chủ đề năng lượng kích thích:

Vai trò của sự ổn định cấu hình và sự ổn định keo trong quá trình kết tụ của yếu tố kích thích thuộc địa bạch cầu trung tính tái tổ hợp ở người Dịch bởi AI
Protein Science - Tập 12 Số 5 - Trang 903-913 - 2003
Tóm tắtChúng tôi đã nghiên cứu sự kết tụ không tự nhiên của yếu tố kích thích thuộc địa bạch cầu trung tính tái tổ hợp ở người (rhGCSF) trong các điều kiện dung dịch mà rhGCSF tự nhiên vừa ổn định về cấu hình so với trạng thái không gấp gọn vừa có nồng độ thấp hơn giới hạn hòa tan của nó. Quá trình kết tụ của rhGCSF đầu tiên liên quan đến việc ảnh hưởng đến cấu trú...... hiện toàn bộ
#yếu tố kích thích bạch cầu trung tính #kết tụ protein #sự ổn định cấu hình #sự ổn định keo #năng lượng tự do
Nghiên cứu về Phonon bề mặt bằng Phương pháp Quang phổ Mất Năng lượng Electron: Lý thuyết về Chéo cắt Kích thích Dịch bởi AI
Springer Science and Business Media LLC - - 1985
TRANG TÓM TẮTTrong vài năm qua, những phát triển thực nghiệm trong quang phổ mất năng lượng electron đã cho phép nghiên cứu các quan hệ phân tán của các phonon bề mặt, trên các bề mặt sạch và bề mặt có các chất hấp thụ. Ngoài ra, các phân tích lý thuyết về sự biến thiên góc và năng lượng của các lớp cắt kích thích cũng đã được phát triển. Những phân tích này đã hướ...... hiện toàn bộ
Nồng độ lactate trong máu sau khi tiếp xúc với vũ khí năng lượng dẫn truyền (bao gồm thiết bị TASER®): Liệu có ý nghĩa lâm sàng không? Dịch bởi AI
Forensic Science, Medicine and Pathology - Tập 9 - Trang 386-394 - 2013
Trong các nghiên cứu trước đây, nồng độ lactate trong máu (BLac) tăng lên một cách nhất quán ở các động vật gây mê và ở các đối tượng con người sau khi tiếp xúc với vũ khí năng lượng dẫn truyền (CEWs) TASER®. Một số người đã đề xuất rằng nồng độ BLac tăng lên sẽ có những hậu quả bất lợi. Trong bài đánh giá hiện tại, các vấn đề sau đây đã được đánh giá: (a) bản chất của các cơn co cơ do CEWs gây ra...... hiện toàn bộ
#lactate trong máu #vũ khí năng lượng dẫn truyền #TASER #co cơ #kích thích điện cơ thần kinh
Nghiên cứu phosphorescence của quang sắc tố diệp lục d. Xác định năng lượng và thời gian sống của trạng thái triplet bị kích thích quang. Bằng chứng về sự nhạy cảm của oxy đơn phân tử Dịch bởi AI
Photosynthesis Research - Tập 108 - Trang 101-106 - 2011
Diệp lục d (Chl d) là sắc tố chính trong cả hai hệ thống quang hợp (PSI và PSII) của vi khuẩn lam Acaryochloris marina, với thành phần sắc tố đại diện cho một lựa chọn thú vị trong quang hợp sinh oxy. Trong khi có nhiều thông tin có sẵn về các thuộc tính quang lý của Chl a, sự hiểu biết về quang lý của Chl d vẫn chưa đầy đủ. Trong bài báo này, chúng tôi trình bày lần đầu tiên một đặc trưng về phos...... hiện toàn bộ
#diệp lục d #phosphorescence #trạng thái triplet #oxy đơn phân tử #quang hợp sinh oxy
Phân bố không đồng nhất của năng lượng hấp thụ trong các vật liệu có điện trở cao được kích thích bởi chùm electron Dịch bởi AI
Pleiades Publishing Ltd - Tập 43 - Trang 396-401 - 1998
Các kết quả thực nghiệm được trình bày về sự thay đổi trong các đặc tính quang học của fluorua lithium (LiF) do chùm electron với mật độ biến đổi theo thời gian và năng lượng xung gần ngưỡng phá hủy vật liệu gây ra. Phân bố không gian của các trung tâm màu được điều tra, đặc biệt là gần các kênh vỡ. Các cơ chế tích tụ khuyết tật không đồng đều được thảo luận cùng với các nguyên nhân cơ bản của sự ...... hiện toàn bộ
#fluorua lithium #chùm electron #đặc tính quang học #tích tụ khuyết tật #phân bố năng lượng
Thời gian sống bức xạ của các mức năng lượng W II bị kích thích Dịch bởi AI
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics - Tập 4 Số 3 - Trang 267-269 - 1998
Thời gian sống bức xạ của 19 mức năng lượng W II được chọn với năng lượng từ 36 000 cm-1 đến 55 000 cm-1 đã được đo bằng kỹ thuật huỳnh quang kích thích bằng laser theo thời gian. Các ion được tạo ra trong quá trình phóng điện catot rỗng và được lưu trữ trong bẫy Paul tuyến tính. Các trạng thái được chọn được tạo mật độ bằng các xung laser nhuộm có thể điều chỉnh và ánh sáng huỳnh quang tiếp theo ...... hiện toàn bộ
#Thời gian sống bức xạ #W II #huỳnh quang #ion #bẫy Paul tuyến tính
Nhận diện Hư hại trong Các cầu Dây treo Dài Dưới Tác động của Nhiều Kích thích Hỗ trợ Dịch bởi AI
International Journal of Civil Engineering - Tập 21 - Trang 1275-1290 - 2023
Nhiều kích thích hỗ trợ (MSE) đã được áp dụng để nghiên cứu ảnh hưởng của chúng đến phản ứng động của các cầu dây treo lớn span do các mối đe dọa liên quan đến động đất. Các phương pháp xác định hệ thống khác nhau bao gồm phương pháp độ cong hình dạng mode và phương pháp năng lượng biến dạng mode đã được áp dụng như các kỹ thuật giám sát sức khỏe để kiểm soát hiệu suất của các hệ thống cấu trúc kh...... hiện toàn bộ
#kỹ thuật xây dựng #cầu dây treo #động lực học cấu trúc #phân tích năng lượng #giám sát hư hại
Một phương pháp mới để xác định trạng thái spin cao tại năng lượng kích thích cao Dịch bởi AI
Springer Science and Business Media LLC - Tập 289 - Trang 193-196 - 1979
Một phương pháp mới để nhận diện các trạng thái spin cao ở năng lượng kích thích cao được trình bày.
Thời gian bán hủy phân rã Be, Li, He và H ở năng lượng kích thích thấp Dịch bởi AI
Acta Physica Hungarica A) Heavy Ion Physics - Tập 17 - Trang 49-58 - 2003
Thời gian bán hủy phân rã của các hạt nhân ở trạng thái kích thích nhẹ như Be, Li, He và H đã được xác định trong quá trình đường hầm qua một rào cản tiềm năng được tính toán từ mô hình giọt lỏng tổng quát và các hình dạng quasi-molecular. Các công thức phân tích cho phép nhanh chóng xác định các thời gian bán hủy khác nhau này đã được đề xuất. Đối với một quá trình phân rã nhất định, chúng chỉ ph...... hiện toàn bộ
#phân rã hạt nhân #thời gian bán hủy #năng lượng kích thích thấp #mô hình giọt lỏng #rào cản tiềm năng
Năng lượng liên kết của bipolaron từ tính trong chuỗi rối loạn Dịch bởi AI
Springer Science and Business Media LLC - Tập 33 - Trang 3735-3744 - 2020
Chúng tôi xem xét một chuỗi rối loạn chứa các hạt lượng tử tạo thành bipolaron do sự tương tác với kích thích từ tính và nghiên cứu cách năng lượng liên kết phụ thuộc vào cường độ của sự rối loạn. Chúng tôi chứng minh rằng sự rối loạn có thể làm tăng hoặc giảm năng lượng liên kết, tùy thuộc vào năng lượng động học của các hạt cũng như mật độ bipolaron và khoảng cách tương tác ghép đôi. Chúng tôi t...... hiện toàn bộ
#bipolaron #năng lượng liên kết #chuỗi rối loạn #kích thích từ tính #mô hình t-J #boson cứng
Tổng số: 46   
  • 1
  • 2
  • 3
  • 4
  • 5